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CONDITIONS ON SURFACES OF DISCONTINUITY IN A RIGID-PLASTIC ANALYSIS?' 

YA.A. KAMENYARZH 

Relationships are established on the surfaces of discontinuity for 
a rigid plastic analysis of inhomogeneous bodies, particularly bodies 
with piecewise-continuous properties. They are derived as necessary 
conditions for the static and dynamic load coefficients to be equal. In 
the special case of homogeneous bodies they are identical with the 
well-known Hill conditions; the necessity of the latter is thereby 
established. The connection of the different formulations of extremal 
problems of limit load theory is discussed in deriving the 
relationships. The mechanical meaning of the relationships obtained and 
certain of their properties are examined. 

1. Ponrmtation of the problem. Conditions on surfaces of discontinuity in a 
rigid plastic analysis are examined in this paper from the viewpoint of limit load theory. 

The probZem of the limit load theory. Let a body occupy a domain D and be subjected 
to mass forces with density f and a surface load with density q applied to a part S, of the 
body surface. There is a set C, of allowable stresses for each point x of the body. The 
stress field that is an inner point of the set of allowable stress fields is called safe. 
The main question of limit load theory is to clarify whether or not it is possible to 
equilibrate a given load I= (f,q) and a safe stress field. 

The static extremal probtem. A field o of allowable stresses is called statically 
allowable for a load ml, m> 0, I = (f,q) if it equilibrates this load; in this case the 
number m, (u) = m is called the static coefficient of the load 1. The exact upper bound 
al = sup m, (u) is called the static limit coefficient of the load 1. The load ml can be 
equilibrated to a safe stress field for O,<m<al and it is impossible to equilibrate 
thus for m> al /l/. Therefore, to answer the fundamental question of limit load theory it 
is necessary to find or estimate the quantity al, that is called the safety factor of the 
load 1 also in connection with the assertion presented. 

Kinematic extremal problems. Kinematic extremal problems that are formulated in the 
following manner play an important part in finding the load safety factor. A dissipation 
function /2-b/ is associated with a set of allowable stresses C, (e is a symmetric tensor of 
the second rank) 

d(s; e) = d, (e) = sup {a,.e: a, E c,) (1.1) 

The strain rate e (u) and dissipation 
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field correspond to a fairly regular velocity field u. 
The velocity field u is called kinematically allowable if it vanishes on a part S, of 

the body boundary complementing the surface &. 
Called the kinematic coefficient q(u) of the load 1 for a kinematically allowable 

velocity field, u is the ratio of the dissipation corresponding to this field to the power 
of the work by the given load 1 on it (if this power is positive) 

mk (u) = j d, (e (u)) dx ( j fu dz -I- jq qu ds)-’ 

An analogous definition is retained if the set of kinematically allowable velocity 
fields is expanded to a certain space of generalized functions and the dissipation and power 
of the work of the load are, respectively, continued into this space id, 7, 81. The kinematic 
load factor for the generalized velocity field v is denoted by &fk(v). 

The quantities 

BI = inf mx (II), fii = inf Mr (v) 

are called kinematic limit factors, where the extremum is sought in the first problem for 
smooth, and in the second for generalized kinematically allowable velocity fields. 

Assertion 1 11, 2, 4/. Every static coefficient of the load I does not exceed its 
kinematic factor 

ma (o) < mk (u), m8 (o) < Mk tv) 

This means that it is sufficient to construct a stress field a and a velocity field 

u (v) for which equality would be achieved in the previous relationship in order to find 
the safety factor of the load al. Indeed, then by the Assertion 1 the common value of the 
static and kinematic coefficient equals at. 

Relation to the probZem of rigti plastic analysis. such 
stress and velocity fields can be sought by relying on the 
following assertion. 

z 
=2 

=Y 

8 

Assertion 2 /I, 41. The stress (I and velocity u fO(v # 0) 
fields are a strong smooth (respectively, weak) solution of the 
problem of rigid plastic analysis for the load ml, m>O, if 
and only if the static m, (a) = m and kinematic mk t”) @fk tv)) 

factors of the load 1 are identical. 
=3 a 

+,jC,)=f 
The rigid plastic analysis problem (RPAP) is understood 

NlqC,)= 0 
here to be the following. A rigid ideally plastic body is con- 
sidered whose flow surface is the boundaries of the set G(CX 
is a convex set of allowable stresses yielding the body properties 

fz 
in the original formulation of the problem of limit load theory). 
A statically allowable stress field o for 1. and a kinematically 
allowable smooth velocity field u satisfying the associated law 
is called a strong smooth solution of the RPAP for the load 1 . 

Satisfaction of the (normal, gradient) law associated with 
Fig.1 the set C, for the velocity field u and stress field o means 

that'thestrain rates e corresponding to u are directed along the 
"external normal" to the set C; 

e (4 E N (e (4 I CA (1.2) 
Here N (T 1 c,) is the normal cone of the set C, at the point T /9/ (Fig.11 

The weak solution of this problem is defined analogously (the smooth velocity fields 
are replaced by generalized fields, and the associated law is weakened /4/I. 

Thus the solution of the RPAP is a method for finding the load safety factor. Assertion 
2 clarifies the role of the associated law in the limit load theory: it does not occur as a 
physical governing relationship but as the necessary and sufficient condition for agreement 
between the static and kinematic load factors and in this sense is finally given a 
foundation. 

The idea for deriving conditions on the surfaces of discontinuity. Conditions on surfaces 
of discontinuity can be given a foundation similar to the associated law. From the viewpoint 
of limit load theory they should satisfy the following requirement. The discontinuous RPAP 
solutions determined by using these conditions should result in the value of the load safety 
factor (as the smooth solution when it exists). 
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For homogeneous bodies the conditions mentioned in /lo/ (the jump in the function f in 
the direction of the normal v to the surface of discontinuity is denoted by 111; f*, f- are 
limit values of the function f from two sides of the discontinuity surface 

(e, (@))fj = @Pj + ajvfV2 

k~,,lv~ =O, ev Wf E N (o+lC& e, ([ul) E VW1C.J (1.3) 

Different conditions from these relations have been proposed for the discontinuity 
surfaces in homogeneous plastic bodies. It follows from the sequel that only conditions 
(1.3) satisfy the requirement mentioned. 

The purpose of this paper is to derive conditions on discontinuity surfaces for 
inhomogeneous bodies that would satisfy the formulated requirement (acceptability for finding 
the load safety factor). 

Weak RPAP solutions 0, v on which the equality m, (0) = MI, (v) is known to be 
achieved, are considered for deriving such relationships. When such a solution is reduced 
to discontinuous piecewise-smooth stress and velocity fields, the conditions on the discon- 
tinuity surfaces of these fields can be found from the determination of the weak solution. 

By such means relationships were obtained on discontinuity surfaces for elastic-plastic 
bodies described by the Prandtl-Reuss equations lllf and the relationships (1.31 /12/. 

An integral relation (Sect-Z) and later relationships on the discontinuity surfaces 
(Sect.3) are derived from an examination of the weak solutions. The simple form and 
mechanical meaning of these relations are established in Sect.4 and some of their properties 
in Sect.5. 

Let us note certain assumptions and notation utilized later. 
The domain Q is located in Euclidean space. Its dimensionality affects only certain 

constants, for instance, when compiling the global part of a tensor or when using the 
imbedding theorem. The values of such constants are later mentioned for the 
three-dimensional case. 

Let Sym denote the space of symmetric tensors of second rank, Ed and sa are, 
respectively, the deviator and global components of the tensor s from Sym, and Symd is the 
subspace of tensor-deviators (deviator plane). The notation a.b = ai,bij. 18 1 = (a.af;" is used 
for the second-rank tensor a, b. The metric tensor iS denoted by g. 

Further assertions' are formulated for the sets C, in the form of cylinders in the space 
Sym with axis directed along the tensor g. They are also valid for bounded sets C,. The 
dependence of C, on x is considered measurable /g/. This condition is satisfied in all 
cases of interest from the mechanics viewpoint. 

A section of the cylinder C, by the deviator plane Symd is denoted by C,+. It is 
assumed that the sets C,d are bounded in a set and contain the identical neighbourhood of 
zero of the space Symd. In this case the equality Q=BI 1131 holds while the equality 
Br = Si 113, 14,f also holds for a certain smoothness of the domain boundary. 

The space of linear continuous functionals in the space X is denoted by X'. The value 
of the functionalf from X' on an element I from X is denoted by (I, f, = f (I). 

If A is a linear operator from the space X into the space Y, then AT is the adjoint 
operator (from Y' into X') while ATT is the second adjoint operator (from X" into Y") . 

2. The integral re2otion. Let us examine the condition for the static coefficient 
m,(e) and the kinematic coefficient Me(v) of the load 1 = (6 s) to be equal. Their 
equality is assured for the RPRP solution s, v in the weak formulation of Assertion 2 (Sect. 
1). 

See /15/ for details and citations of publications in which this problem has been studied. 
We will present just the main definitions. 

We consider the space of the stress fields 

The conditions for equilibrium of the stress field T from S with the load 1 = (I, 4) 
are given by the principle of virtual velocities 

pIefoudz= qu de. VU!ZU 
P 

U=U(ra,s,)={uEC-~~):P~suPPu,s,t>~~ 

(Def&,,=+($ +$ 
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Let 81 be some stress field from the space S equilibrating the load I while r: is the 
set of stress fields equilibrating the load I=0 (f= 0, q= 0). Then 2+ mat is the set of 
stress fields equilibrating the load .I. 

We also consider the space of velocity fields V, and the space Ful 

Obviously F;,, = S and Def, is a continuous operator acting from V, into FCn. Let 

P and S, be such that 11 u IL, Q cl1 Def, ulk, for any u from V, (see /16/ for conditions suf- 
ficient for this). Then the operator Def=(Def,)TT is a continuous continuation of Del, 
into the space VOW. It maps the space of generalized velocity fields V," one-to-one on the 
set E of kinematically allowable generalized strain rate fields /8/ 

E=Y= (e~S’:<r,e,=O VTEX) 

The set C of allowable stress fields, the dissipation D, and the weak form of the 
associated law are defined by the relationships 

C--.{OES:u(z)ECx for 0.v. IfSI) 

D(e)=sup((U,,e):U,EC), e=S 
OEC, D(e)=co, e), eeS’ 

The stress field GES and the velocity field Y fz VO" satisfying the relations 

is called the weak RPAP solution for the load ai1 . 
The kinematic coefficient for any genealized velocity field Y E Vo" satisfying the 

condition of positivity of the power <SJ, Defv> > 0, is determined by the relationship 
MP (v) = D (Def v)/ (91, Def Y> 

and the static and kinematic limit coefficients as the extrema 

Let the equality m,(o)= Mk(v) be satisfied. Then the pair a, v is a solution of 
problem (2+2) cc, = m, ((I) = Mi, (v) and the relations (2.2) can be utilized to derive con- 
ditions on surfaces of discontinuity 

Contraction of the generalized velocity field. There is no natural embedding of piecewise- 
smooth functions undergoingdiscontinuity on a certain surface in the space V,'. Consequently, 
instead of v E V,,", e = Defv E S’ their contractions v@) = v IA, &) = e 15(r) in a certain 

space A, W; are considered. The contractions can already be discontinuous functions. 
Let A and S(r) be Banach spaces continuously embedded in V,' and s, respectively 

(Assumption 1). Then the contractions 0, ecr) are linear continuous functionals in A, S(r). 
Moreover, if DefJz for any field '5 from W belongs to the space A IAssumption 21, 
then 

e(*) = Def@W), DefW = (D&r [,(?,)T : h’-+S’ (2.4) 

follows from the relationships e = Def v, v E V,". 

Let us indicate the relations which the field 0, v@) satisfy if m, (0) = Mk (v) or, 
equivalently, (I, e = Def v are extremals of the Problems (2.3) or, finally u, v is a 
solution of the Problem (2.2). 

Connection of different formulations of limit load theory extremal problems. Let us 

introduce the sets X(r), C(r), E(r) and the functional D(r) be replacing the space S by 

the space W in the definitions ,Z, C, E, D: Let the load 1 be equilibrated by the space 

field 91 E S(T). Let us examine the problem analogous to (2.3) of finding the extremaal(", fin 
and the extremals on which they are achieved 

al") = sup tm > 0 : (z(r) + msr) n c(r) p 631 

fi!" = inf (U"'(e)/<e,, e) :e E EC'), (s,,s) > 0) 

(2.5) 
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These problems are formally duals; consequently cQ(') < @1(T) /9/. 
We assume that elements of the space h can be considered as loads (f,q) for which 

the power is determined - the right-hand sides of (2.1). For any load from h let the stress 
field equilibrating it also belongs to the space SST) (Assumption 3). 

Then the first problem of(2.5) will obviously agree with the first problem of (2.3) and 
a?) = at. 

Let the set Ube compact in the space V,, for example, the boundary aQ consists of 
several connectedness components, where the spacing between its parts S, and S, is positive. 
It then follows from the equilibrium conditions (2.1) that Def,r 'i for any z from W', 
meaning that also <r,Def@)u> = 0 for us h’, i.e., Def@) u belongs to the set EC’). 

In particular, if e = DefuE E, then eitl belongs to the set E(T). Using another obvious 
inequality D(') (ecr)) < D (e) we find 

pi" < inf {~(rt(e('))!(st,e(')) :e E E, <si,e>>Ol < fb = QI 

When taking account of the relations noted above a$') < 61' r), a$'t = aLI this results in 
the equality al") = flit') = al. Finally, since the relationships D(e)= <a,+, (~EC are satis- 
fied for the extremals (I, e of Problem (2.3) and the stresses SW belongs to the space 
(by Assumption 3), then 

w, e) <a, e('3 DC’) @‘) 
al-;-=-<_ 

D (ef 
e,, e) (s ecr)) (sl, e(‘)) 

< 
19 

-q-z- = al 

which means the minimum of (2.5) is achieved on B(T). Together with the previous remarks 
this results in the next assertion on the connection between problems (2.3) and (2.5). 

Let Assumptions l-3 be satisfied and let the set,U be compact in the space Y,. Then: 1) 
problems (2.51 are dual u*(r) = ~&P); 2) the extrema (2.5) agree with the load safety factor 

o-1: 3) the stress problems (2.3) and (2.5) agree; 4) if the extrema (2.3) are achieved on 

a,e=Defv, then the extrema (2.5) are reached on (T, eir). 
This assertion shows how other expansions of the original formulation of limit load 

theory problems can be obtained from the problem (2.2) (among them in particular is the 
vroblem examined in 1171). They can be used to find the load safety factor. On the other hand, 
Ehis assertion yields relations which the fields d, v(t) 
on discontinuity surfaces are derived in the long run. 

space h, S(r). We later consider the spaces 

A = A*. (a, Is,,) = Lp (Q) x L, (S,), 

S”’ = S$‘(Q, S,) = (@ES: Div,oEL,,(Q), 

iDir,o),j .= aoijjax' 

satisfy and from which conditions 

The quantity @V Is, is determined by using mapping of the trace (Lemma 4.1 in fl8/) 

as a linear continuous function on W;il @st;), while sv Is, is its contraction in the set of 

such functions w from w;/* (an) for which supp WC se. 
The embedding of the space h into V,’ is given by the relation 

<",I) ={fvdr-t 1 qvds, 1 =(f,q)Eh, VEV, 
n sq 

Here the right-hand side is defined since the space V 0 is embedded continuously in 
y;K& P-‘-l-P*-‘=~, i<P<%. and there is a continuous mapping of the trace from V, into 

1 (see ia/, say). For the same reason the mentioned embedding is continuous. 
Since the continuity of the embedding of SW into the space S is also obvious, 

Assumption 1 is satisfied. Conditions sufficient to satisfy Assumptions 2 and 3, and of 
course, also, to validate the assertion formulated above about the connectedness of the 
problems (2.3) and (2.51, are given by the following proposition, 

Lemma 2. Let 62 be a bounded domain of the class c" and let the set Ube compact in 
the space V,. Then: 1) if r belongs to the space SW then Def,,x~ = (-Div,z, sV Is,) and 
therefore it belongs to the space h; 2) ii the load l== (f,q) from I% is equilibrated by 
a stress field rE S, then 
S(P). 

Div, z = -f, z, Is, = q and therefore, ‘c belongs to the space 

The proof relies on Lemma 4.1 in /18/. 
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Piecewise-smooth fieZds Q,U and the integra2 relation. It is later assumed that the 
conditions under which there is the above-mentioned connectedness of problem (2.3) and (2.5). 
are satisfied. By virtue of this connectedness, the extremals u, e, = Def(') u (u = v(r)) of 

the problem (2.5) correspond to the fields u, v for which there is the equality mb (4 = 

Mk (V)' 
When o,u are discontinuous piecewise-smooth fields, the required integral relation 

results from their extremal properties. 
The velocity u as an element of the space X is the pair (aI, “F)r “I E &n (91, UF E 

L (S,) /17/. We will say that the stress 0 6E S(P) and the velocity UEA are piecewise- 

smooth if the domain a is divided into a finite number of regular domains 0, (a = 1, 2,. . ., 
M),. for each of which u E C*(rS,), uI E Cl (a~,) and, moreover, UP E L, (St&. Here the domain 
0' is called regular if the formula for integration by parts 

Swdivv&= S wv,ds-svggradwds 
0 ao 0 

is valid for any functions v,w continuously differentiable on G. 
The domains o,(a = 1, 2,. . ., M) under consideration are called smoothness domains for 

the fields u,u. The smoothness domains for the piecewise-smooth fields e,u can 
obviously be selected with considerable arbitrariness, for instance, by reduction. 

The fields u, u can suffer a discontinuity on the boundaries of the smoothness domains. 
The functions UI are denoted by lul t= IIll1 on the discontinuity surfaces. The external 
normal is selected on the boundary of the domain 61 and by definition we set In] = ur - nr ]s 

q 
on the surface S, and Iu]= -ur]s tl on the surface 8,. The notation r= lJ,ao, is 

also used. 

Lenm 2. Let the extrema (2.5) be achieved on the stresses a and the strain rates 
where e, = Def@) u, u E A' (in particular e, = et'), II = v(r), e = Def v and 
can exist). 

ma (4 = MN W? 
Let the stress u and the velocity u be piecewise-smooth. Then for any field 

s* E 0') that is continuously differentiable in the smoothness domains of the field o, u 
the following inequality is satisfied 

j(“-u*)ij[UilVjds+ j (a- ~r)ij2!&dza~ 
r Q\F 

Remark 1. The ordinary derivative a@~', denoted by antazj in (2.6), is defined on 

Q \r.* The expression OiJWJ has meaning on the surface r just as does 04) “I) since 
the stresses (r belong to the space .Scr) meaning, the condition lo&= 0 is satisfied on 
the surface of discontinuity. 

PrOOf. Since the extrema (2.5) agree (equal to the safety factor a,), then for the 
corresponding extremals u, e,= Def(')u the following relationships are satisfied 

u =c0+ alal, 00 E E@), 0 E C(‘), I?(‘) (so) = al <s,, e0) 

The equality <a,, Def(+) n) = 0 is satisfied for the stresses ffa ez 0 and the strain rates 
Def@) u (see above). Consequently, the equality to, eO> =D(+)(e,) results from the preceding 
relationships. By definition this means that the inequality 

0. E CC'), 
0~ -ca,,sO)>O, is satisfied for 

any and which with the equality a0 = Def(?) " and taking the first assertion of 
Lemma 1 into account is represented in the form 

After integrating by parts in the first component over each of the smoothness domains 
of the fields c,u and using the definition of [u], this inequality takes the form (2.6). 

3. Conditions a the discatinuity surfaces in an inhrnaogeneous rigid plastic body. 
We shall say that the properties of a body are continuous in the domain o 

if the values d&e) of the dissipation function for all points SE@ and all tensors 
eESymd are identical with the values of a certain function continuous in 0 X Sym* 
(the bar denotes closure). The properties of a body filling the domain a, are called 
piecewise-continuous in 6r is separated into a finite number of domains in each of which 
the properties of the body are continuous. 

We consider a sufficiently smooth common part y of the domain boundary ~+,a-, in each 
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of which the properties of the body are continuous. Let d+ (a) be a function continuous 

on i3+ x syrnd (on G- xeSymd) that is identical with the dissipation d on w+ X Symd 

(on o- X Sym$ Let C$(&';) be the set of allowable stresses defined for all points x 

from i3+ (from i3-) that corresponds to the dissipation d,+ (&-)s (We recall that there 
is a mutually one-to-one correspondence between C, and a, /4/j. 

The sets C,+, c; of allowable stresses on both sides of the surface y are distinct. 
In conformity with the definition presented above, the sets C axe considered to be bodies 
with piecewise-continuous properties for which the stress field is allowable if it allowable 
in each of the continuity domains of the properties. In other words, composites are examined 
in which the bond is not weaker than the bounded parts. 

Let v be the unit normal to the surface y at the point ti. We introduce the set 

&' (and B; analogously) 

BX+ = @EC,i : 3%- E C,-, Tj jVj = Ti j_Vj) 

We obtain conditions on the discontinuity surfaces for the stresses Q and the 

velocities u (which can, in particular, coincides with the discontinuity surfaces of the 
properties of the medium) in the form 

EV (En]) E A' (e' I ‘x+), EV ([u]) E N (u- 1 B*-), [Uij] yj = 0 

(8, (l”ll)ij = ([&I vj + [Uj] q)/2 
(3-f) 

Remark 2. The surfaces S, and Sp are also later included among the discontinuity 
surfaces. The boundary condition "Is, = 0 is firstly replaced thereby by the weaker con- 

dition uI. Is, v= 0 1191 and, secondly, a velocity uF different from the trace UI Is, 

can be considered on the surface Sa/17/. We set c*+==sym and e$ r,, vj = Pi on the 

surfaces 5, and Sa in the conditions (3.1) according to the definition for their external 
sides with respect to the domain R. Then satisfaction of the relations (3.11 on s, is 
equivalent to the condition a,([~]) EN (e-1 G-j, and on Sp to the condition 

FV f[nl) = flt‘J-fCx-f. “ij-vl isp = Bi 

Theorem. Let; 1) the properties of the body be piecewise-continuous; 2) the static and 
kinematic factors of the load 1 be equal for the stress field D E S(T) and the velocity 
field v E VOu, m, (a) = Mk (v); 3) the stress field a and velocity field II= vcr) be piece- 
wise smooth. Then the relations (3.1) are satisfied on the discontinuity surfaces of the 
fields II, u and the associated law (1.2) is satisfied in their smoothness domains. 

For any interior point T of the set B,,z,E P an allowable piecewise-smooth stress 
field r, is constructed in the neighbourhood of the point Q, with a single discontinuity 
surface, the part of I lying on the neighbourhood under consideration, where T*+(Q)== T,[+rilj~O. 
Furthermore, to prove relationships (3.11, the integral inequality (2.6) for (r*= (PT& (1 --@o, 
should be used where cp is a smooth function OfeGG and the ordinary localization 
procedure is used by shrinking the support of the function rp in a suitable manner. Relation- 
ship (1.21 is proved analogously with appropriate simplifiation when the point x,, lies in 
the smoothness domain of the fields 0,~. 

COrOZhq# 1. The condition [uilvi = 0 is satisfied on the discontinuity surface. It 

results from the relationships (3.1) exactly as from (1.3) in /II/. 

CoroZZary 2. In the special case of a homogeneous body the conditions (3.1) on the dis- 
continuity surface reduce to the known relationships (I.3). This results from agreement of 
the sets C,' = C,- = C,, meaning also the set B,+ = B,-= E,. Therefore, the conditions 
proposed in /lo/ must be satisfied on the stress and velocity discontinuity surfaces if the 
latter results in equal static and kinematic load factors. 

4. 2XmpZe form ad 3nechanicaZ meaning of the conditions on the discontinuity surfaces, 

Using the unit normal v to the discontinuity surface, we set the scalar PV (s) and 
the vector T,,(s) with the components TVi in correspondence to each symmetric tensor of 
the second rank s 

P, (s) = S’jViVj, T,‘(S) = siry~ - Slnryt”mVi 

The vector T,(s) is obviously orthogonal to the vector v+ If a 
tensor, then PV(e) is the normal force, and TV (e) is the tangential 
with normal v. When av = 0 the inequalities 

eV(a).s = 2T,(e, (a)) TV(s), T,&(a)) = 0, Py(evW) = 0 

is the stress 
force on an area 

(4.1) 
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hold for the tensor ev (a) with components (e, (a))lf = (alvl + a~,)/2. 
Let A,* be a set of vectors (orthogonal to the vector v) in which the mapping of 

TV goes over into the set C,*. Then the set A,” = A,+ fl A; has the meaning of a set 

of tangential forces on the discontinuity surface that are allowable from the viewpoint of 
both conditions a'(z)E~f&*, o-(r)E C;. We note that the set A,” is not generally identical 
with the set T,(C= n C;), but merely includes it. 

The conditions (3.1) on the discontinuity surfaces are equivalent to the relatioss 

[u] E N (t 1 A;), t ~;T,,(o+) = T,(d), Pv(o+) = P, (a-) (4.2) 

o+ E c,*, a- E c,- 

The equalities of the quantities TV and P, are simply another way of writing the 
conditions [uJY, = 0. To confirm the equivalence of the relationships (3.1) and (4.2) we use 
the equalities (4.1) and the possibility of representing any vector t, from A,” in the form 
t, = T, ([I*‘+) = T, (a.,-) for certain a*+ from C,+ and eL- from C,-, where PV (e*+) = 
PV (e*_). 

The first of relations (4.2) has a geometric interpretation completely analogous to 
the interpretation of the associated law (1.2). 

The sets A,+, A,, AZ0 that lie in the plane l& orthogonal to the vector v and the 
cones of the external normals to the set Ax0 at the points K, L, M are shown in Fig.2 
(compare with Fig-l). We note that even in the case of smooth flow surfaces (the boundaries 
of the sets Cc+, G-1 the boundary of the set Ax0 has angular points at the common 
position. 

Finally, the first of the relationships (4.2) can be interpreted as the maximum principle 

tE -44, 0'--t*)[ul>O for any t,EAP (4.3) 

It is exactly analogous to the well-known maximum principle (u -e*).e>O, a,~ C,, that 
connects the stress and strain rate in a smoothness domain. Here the tangential force plays 
the part of the stress while the velocity jump plays the part of the strain rate. 

Therefore, conditions (3.1) or (4.2) on the discontinuity surface denote the following 
1) the farce on the discontinuity surface is continuous; 2) the stresses on both sides are 
allowable; 3) the velocity jump and the tangential force satisfy the law associated with the 
set of allowable tangential forces or, equivalently, the maximum principle (4.3). 

Let us present certain simple properties of the conditions (4.2). It is assumed that 
the sets C,d+,C,*- are strictly convex (and, as always, contain the neighbourhood of zero). 
Then the set A,’ is also strictly convex. 

1". For any given direction the velocity jump [u], [u]v=O, the tangential force t is 
uniquely defined and lies on the boundary of at.least one of the sets A,+, A;. 

20. If the properties of the body undergo a discontinuity (C,++G-) then for a non-zero 
velocity jump [II] the stresses on one side of the discontinuity surface can lie strictly 
within the appropriate flow surface. The conditions (4.21 here remain arbitrary for their 
components. 

3'. If the tangential force lies on the boundary of the set A,+, say, than the stresses 
a+ lie on the appropriate flow surface, the boundary of the set C,+. The deviator a+d is 
determined in a unique manner from the tangential force. 

the boundaries of both 
the global part are 
continuity results for 

4". In particular, if the tangential force is known and lies on 
sets A,+, A,-, then both deviators e+d and e-d and the jumps of 
determined in a unique manner. Hence, the known condition of stress 
a homogeneous body; it is not satisfied in the general case. 

Fig.2 



5. Decomposition of the velocity jump and the minimal dissipation property. 
Let us mention still another useful representation of the relationships under 

consideration on discontinuity surfaces. Ail the vectors participating in the subsequent 
construction are orthogonal to the vector v or, speaking differently, lie in the plane II,. 

The dissipation function AZ0 can be related to the set of allowable tangential forces 

AX" introduced in the same way as for the set of allowable stresses. Namely, we set 

P,"(w) sllp(l*w:l* E A",) (5.1) 

for the vector w of the plane 11,. The decomposition Iul = w+ + w- is examined for the 
velocity jump, where w+,w- are vectors of the plane II,. The following assertions hold. 

1". The velocitv jump ]u] and the tanaential force t satisfy the condition [II] F= .rv (t -- - .a 

I A,+) if and only if the decomposition 

[u] :: W’ 4. w, \v+ E !1’ (t 1 A,‘), w-f N (t 1 A,-) 

is possible. 
20. This decomposition possesses the following minimal property: 

min (d,+ fey (w+)) + dx- (ev (W)) : W+ E II,., w- 6~ I&, w+ f w- : [uj) 

(5.2) 

(5.3) 

is achieved on the vectors w+ = W', w- = w-. 
3“. The minimal value of (5.3) equals 

d,+(ev(W+)) f d,l (ey(w-)) = ~,o([ml) = t bl 

FOX the sets A,+, AZ- we introduce the dissipation functions 6X+, &- 
to the relationship 15.1). The equalities 

A,+@'+) = dXte,cw*t). A,-@-, = dx-(8,(w-f) 

follow from (4.1). 

analogously 

Then the problem (5.3) takes the foxm 

min(P+(w+)+dI-(w-): w+ E Dy, W-E II", w+fw- = [u]) (5.4) 

400 

The necessary and sufficient conditions of the extremum 191 for this problem are con- 
verted to the relationships (5.2) by the Marrow-Rockafellar theorem or to the relation 
1~1 = N (t I A,*). This proves the first two assertions. The third assertion follows from the 
fact that the minimum in the problem (5.4) is reached according to Theorem 1 in Sect.3.4 
from /9/ and equals 

a,'(W+)+ 6=-(W-)= aX"([u]) 

The equality 6," (lu])= t]u]$ in the third assertion follows for tCZA** from the con- 
dition (u] E N(t] AP), since this is equivalent to the maximum principle (4.3). 
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ON ASYMPTOTIC INTEGRATION OF THE EQUATIONS OF MOTION 

OF MECHANICAL SYSTEMS SUBJECTED TO RAPIDLY OSCILLATING FORCES* 

V-V. STRYGIN 

An algorithm for the direct expansion of solutions of the Cauchy 
problem in a small parameter in a finite time interval is proposed in 
the development of the idea in the author's paper /l/ for systems of 
differential equations describing the motion of mechanical systems 
subjected to rapidly oscillating forces. 

We consider a mechanical system whose motion is described by the vector differential 
equation 

A (q)cI" + B (q)q' = F (t, e) + oQ, 0, 9, r) (1) 
where q = (ql, . . ., qn) is the generalized coordinate vector, the dot denotes differentiation 
with respect to time t', A is a positive-definite matrix of the inertial forces, B is the 
matrix of the dissipative forces, oQ, are large amplitude oscillating forces (03 1, T= ot). 
For simplicity we will consider @to be a trigonometric polynomial inz of period 2n, with 
zero mean in 'i. Let the following initial conditions be given 

4 (0) = a, Q'(O) = B (2) 

We will seek the approximate solution of the Cauchy problem (1) and (2) in the form 

q* = “0 (t) + o-1 IUl (t) f v, (t, s)l + . 1. + 0-b lu, (t) + % (6 T)l -I- . . . (3) 

where vi (t, x) are periodic functions of 7 of period 2n with zero mean value. The sum 
I(,+ o-Q+ + . . . is the smooth motion component while o-'v, + o-'u, + . * . is the vibrational 
component. We have 

A (q*) = A* -f- o-‘Aqo (~1 -I- ~3 -t 

CL-*Aqo (ua f us) + l/aA;q (~1 + ~1)’ + * l . 

(Aa=.4(ug), A ‘=A P q (uo), . . .) 

Analogous expressions hold for B(p*),F(t,q*), . . . . 

We obtain from the initial conditions (21, formulas (3) and the result of differentiating 
(3) with respect to t 

*PrikZ.Matem.Mekha?z.,53,3,518-519,1989 


